Лучи профессора Гурвича
"ЗС" №10-11/1939
Шестнадцать лет назад в научном мире произошло событие, глубоко заинтересовавшее биологов и физиков. Советский ученый-физиолог профессор Гурвич открыл, что в организме растений и животных возникают и действуют какие-то невидимые лучи...
Опыты с корешком лука
Дело было так. Гурвич искал причины деления клеток. Известно, что клетки не размножаются непрерывно. После своего возникновения каждая молодая клетка некоторое время растет, потом наступает период покоя, во время которого никаких видимых изменений в ней не происходит. Но вот через более или менее продолжительное время клетка, как будто "ни с того ни с сего", начинает делиться пополам. Вместо одной получается две новых. Почему это происходит? Какой толчок выводит клетку из состояния покоя и заставляет ее делиться?
Много сложных исследований проделал профессор Гурвич, пока не убедился, что этот толчок дается клетке извне, какой-то внешней силой, находящейся, однако, где-то тут же в организме. А раз это так, то, очевидно, можно подыскать такие условия, при которых эта сила выдаст себя, укажет свое местопребывание.
И вот Гурвич стал подыскивать такие условия. Решающую роль в этих поисках сыграл лук, самый обыкновенный лук, который мы употребляем в пищу. Профессор рассудил так: корешки лука растут чрезвычайно быстро, а это значит, что в них происходит очень интенсивное деление клеток. Следовательно, и сила, заставляющая их делиться, здесь должна быть особенно ярко выражена.
Гурвич взял один луковый корешок и укрепил его вертикально. Другой корешок вместе с луковицей он расположил горизонтально, так, что самый кончик его был направлен прямо в середину вертикального корешка, но не прикасался к нему. Через несколько часов профессор снял вертикальный корешок и тщательно исследовал его под микроскопом. Оказалось, что в том месте, на которое был направлен кончик другого корешка, было гораздо больше делящихся клеток, чем во всех других местах.
Много раз в различных вариантах был повторен этот опыт; результат получался тот же. Конечно, Гурвич еще и раньше, на основании своих предварительных исследований, был уверен, что именно какие-то лучи вызывают клеточное деление. Но доказал ли это опыт с луковым корешком? Ведь могло случиться, что эффект получается под действием летучих газообразных веществ, исходящих от кончика корешка.
Чтобы проверить это, Гурвич поместил между двумя корешками тонкую пластинку из кварцевого стекла. И тем не менее эффект был тот же: как раз против кончика корешка количество делящихся клеток увеличилось.
Существование лучей, действующих на расстоянии, теперь не подлежало сомнению. Гурвич назвал их лучами митогенетическими, то есть вызывающими деление клеток (митоз - деление клетки).
"Химический рентген"
Весть об открытии биологических лучей вызвала целую бурю исследований. Сотни ученых во всех странах мира стали изучать проблему митогенетического излучения. И это понятно. Всем было ясно, что тут дело не в луковом корешке и не в клеточном делении, что это - только первые признаки какого-то совершенно нового пласта важнейших явлений в органическом мире, еще не известных науке.
Предстояло узнать, что это за лучи, какова их природа, происхождение, интенсивность, роль в организме.
Новые интереснейшие факты появлялись один за другим. Вместо корешка лука стали пользоваться в качестве детектора (обнаружителя) излучения гораздо более удобным и точным биологическим "инструментом" - культурой дрожжевых клеток, размножающихся в жидкой питательной среде. В некоторых случаях такой "прибор" улавливал митогенетические лучи на расстоянии до пяти сантиметров! За сравнительно короткое время было найдено большое количество новых источников митогенетических лучей: бактерии, инфузории, корешки фасоли и подсолнечника, яйца морских ежей, мышцы животных, их кровь, роговица глаз, нервы, раковые опухоли и другие.
Обилие и разнородность источников излучения чуть было не сбили с толку исследователей, тем более что очень часто попадались такие источники, которые то излучали, то вдруг оказывались лишенными всяких признаков излучения. И почему это получалось - трудно было понять. Становилось все более ясным, что лучи появляются в результате каких-то химических взаимодействий. Тогда стали исследовать разные химические процессы.
И вот оказалось, что если над культурой дрожжевых клеток поставить стаканчик с кварцевым дном и, налив воды, растворять в ней обыкновенную поваренную соль, то через кварц пойдут лучи: клетки дрожжей начнут усиленно делиться. То же самое получалось при растворении металлов в кислотах, при действии кислот на щелочи и при ряде других реакций. Наконец выяснилось: всякий химический процесс, при котором выделяется энергия, может служить источником митогенетических лучей.
Открытие профессора Гурвича застало врасплох современную физику. У нее не оказалось такого чувствительного прибора, с помощью которого можно было бы уловить, измерить и вообще изучать митогенетические лучи, настолько они были слабы по своей мощности. Но эта слабость нисколько не мешала живым клеткам бешено делиться, когда на них попадали лучи от соседних делящихся клеток. Пришлось Гурвичу и его последователям изобретать, как мы уже видели, "биологические приборы".
И нужно сказать, что биологи блестяще справились со своей задачей. Пользуясь вначале такими "приборами", как луковый корешок, культура дрожжей, они не только определили природу невидимых лучей, но даже разложили эти лучи на их составные части - совершенно так же, как мы посредством стеклянной призмы разлагаем солнечное излучение на составляющие его разноцветные лучи.
Все известные нам виды лучистой энергии представляют собой электромагнитные колебания, волны. Возьмем ли мы свет, тепловые лучи, радио, рентгеновы лучи или гамма-лучи радия - все это по своей природе одно и то же. Различаются они между собой только частотой, то есть количеством колебаний в секунду.
Может показаться невероятным: каким образом один и тот же физический процесс порождает явления, столь разнородные по своим свойствам и формам? Однако на самом деле тут ничего невероятного нет. Мы знаем в природе много примеров того, как изменения чисто количественные приводят к новому качеству. Так, от количества колебаний струны в секунду зависит тон звука. Изменение скорости движения молекул мы воспринимаем как тепло и холод, как превращение газа в жидкость и наоборот. Точно так же и электромагнитные колебания различных частот мы воспринимаем как самые разнородные физические явления.
Если колебания совершаются 750 биллионов раз в секунду, то мы видим фиолетовый свет. Если уменьшить постепенно скорость колебаний вдвое ( до 375 биллионов в секунду), перед нами пройдут все цвета солнечного спектра, и наконец мы увидим красный свет. Уменьшим еще - получатся невидимые тепловые, или инфракрасные, лучи. При дальнейшем уменьшении мы обнаружим радиоволны - сначала короткие, потом длинные, на которых мы слушаем передачи радиовещательных станций (около 300 тысяч колебаний в секунду).
А если мы будем не уменьшать, а увеличивать количество электромагнитных колебаний в секунду, то получим сначала невидимые ультрафиолетовые лучи, потом рентгеновы, затем гамма-лучи радия и наконец самые "быстроволновые" из известных науке - космические лучи.
Таков в общих чертах спектр лучистой энергии.
Когда Гурвич открыл митогенетические лучи, он сейчас же стал искать им место в этом спектре. Первые же опыты показали, что митогенетические лучи свободно проходят через кварцевую пластинку и не проходят через стекло. Кварцевая пластинка, покрытая тонким слоем желатина, тоже задерживала лучи. Это указывало на то, что митогенетические лучи родственны ультрафиолетовым, которые обладают точно такими же свойствами. Но обычные ультрафиолетовые лучи, например те, которые могут быть получены с помощью ртутной лампы, не вызывают усиленного деления клеток, как митогенетические. Значит, это не совсем одно и то же.
Начались кропотливые изыскания, в результате которых место митогенетических лучей в спектре было найдено. Оно оказалось в самом "быстроволновом" конце участка, занимаемого ультрафиолетовыми лучами, почти на границе с рентгеном. Это полоса частот от 1,25 до 1,5 триллиона колебаний в секунду.
Позднее был найден и физический источник этих быстрых колебаний: в спектре вольтовой дуги были обнаружены лучи, вызывающие усиленное деление клеток.
Таким образом, мы теперь знаем, какова природа излучения, открытого Гурвичем. Это - электромагнитные волны очень высокой частоты, близкие к ультрафиолетовым.
Митогенетические лучи оказались способными, проходя сквозь кварцевую призму, разлагаться на свои составные части, давать свой спектр. Пользуясь этим свойством, ученые установили, что каждая из основных биохимических реакций - например, процесс распада белка (так называемый протеолиз), процесс распада углеводов (гликолиз) и другие - дают свои характерные митогенетические лучи с совершенно определенной частотой колебаний.
Это очень важное открытие. Оно дает возможность узнать, какие химические процессы происходят в здоровом или больном органе животного, даже не прикасаясь к нему. Для этого достаточно просто наблюдать излучение того или иного органа в естественных условиях. Можно сказать, что митогенетическое излучение станет как бы "химическим рентгеном" для медицины. Рентгеновы лучи дают возможность видеть формы внутренних органов, а митогенетические лучи раскроют их химию, их внутреннее содержание.
Изучение проблемы митогенетического излучения обнаружило много новых, подчас совершенно неожиданных фактов.
Французские ученые, супруги Магру, исследовали, как действуют митогенетические лучи на развитие личинок морского ежа. Оказалось, что при продолжительном воздействии лучей нормальное развитие личинок резко нарушается, появляются уродливые карликовые формы, лишенные конечностей. Зато в других случаях, например с плесневыми грибками, наблюдалось ускорение развития.
Исследователь Бляхер обнаружил, что эти лучи благотворно влияют на заживление ран. Он вырезал треугольные отверстия в хвостах головастиков и затем половину их подвергал воздействию лучей. У облученных головастиков нарушенная ткань восстанавливалась быстрее, чем у необлученных.
Очень много исследований было посвящено излучению крови. Выяснилось, что оно очень чутко реагирует на малейшие изменения в обмене веществ, в общем состоянии организма. У голодных животных кровь перестает излучать. Итальянец Протти и немец Гейнеман наблюдали то же у сильно одряхлевших стариков.
Физиолог Брайнес, обследовав большое количество рабочих завода "Электросила", убедился, что после первых же часов работы митогенетическое излучение крови ослабевает, а после семичасового рабочего дня исчезает вовсе. Один-два часа отдыха вновь полностью восстанавливают излучение. Кровь рабочих, вернувшихся из двухнедельного отпуска, показывает повышенное излучение.
Большинство болезней - тиф, туберкулез, менингит и другие - не отражается на излучении крови. Но замечено, что при раке иногда еще в самом начале возникновения опухоли излучение крови полностью прекращается. Это, возможно, позволит распознавать страшную болезнь в самом начале, когда она еще не так опасна.
Наука о невидимых лучах, возникающих и действующих в организме животных и растений, делает только первые шаги. Многое еще остается неясным. Многочисленные факты, подобные только что приведенным, часто непостоянны, иногда противоречивы, и понять их смысл, установить точные законы митогенетического излучения бывает пока невозможно. И тем не менее эти же факты говорят о том, что наука вплотную подошла к механизму неизвестного до сих пор биологического явления, овладев которым мы сможем глубоко проникнуть в тайны живого организма.|Химический рентген